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Probability distribution of dependency distance 
 

Haitao Liu, Beijing1 

Abstract. This paper investigates probability distributions of dependency distances in six texts ex-
tracted from a Chinese dependency treebank. The fitting results reveal that the investigated distribu-
tion can be well captured by the right truncated Zeta distribution. In order to restrict the model only to 
natural language, two samples with randomly generated governors are investigated. One of them can 
be described e.g. by the Hyperpoisson distribution, the other satisfies the Zeta distribution. The paper 
also presents a study on sequential plot and mean dependency distance of six texts with three analyses 
(syntactic, and two random). Of these three analyses, syntactic analysis has a minimum (mean) 
dependency distance.  
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1 Introduction 

Dependency analysis of a sentence can be seen as a set of all dependencies found in the sen-
tence (Tesnière 1959, Nivre 2006, Hudson 2007). Figure 1 displays a dependency analysis of 
the sentence The student has a book. 

 

 

Figure1. Dependency structure of The student has a book  
 
Figure 1 shows the dependency between dependent and governor, whose edges have been 
labeled with the dependency type. The directed edge from governor to dependent demon-
strates the asymmetrical relation between the two units.  

Treebanks are corpora with syntactic annotation. They are often used in computational 
linguistics as a resource for training and evaluating a syntactic parser (Abeillé, 2003). Figure 
1 can be represented as shown in Table 1.  
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Table 1 
Annotation of The student has a book in a dependency treebank 

 

Dependent Governor 

Order 
number Character POS Order 

number Character POS

Dependency 
type 

1 The det 2 student n atr 

2 student n  3  has v  subj 

3 has v        

4 a det 5 book n atr 

5 book n 3 has v obj 

 

Dependency distance is the linear distance between governor and dependent (Hudson 
1995). The concept was first used in Heringer/Strecker/Wimmer (1980:187). Formally, let 
W1...Wi...Wn  be a word string. For any dependency relation between the words Wa and Wb, a, 
b are order numbers of the words Wa and Wb (1 ≤ a ≤ n, 1 ≤ b ≤ n, a ≠ b); if Wa is governor 
and Wb is dependent, then the dependency distance (DD) between them can be defined as the 
absolute value of the difference a-b; by this measure, adjacent words have a DD of 1.  For 
instance, a series of dependency distances can be obtained from the sentence in Table 1 and 
Figure 1 as follows: 1 1 1 2. In other words, the example has three dependencies with DD = 1 
and one dependency with DD = 2. Using the same method, we can also extract a series of 
dependency distances from a text.  

Formula (1) can also be used to calculate the mean dependency distance of a larger 
collection of sentences, such as a text:  
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In this case, n is the total number of words in the text, s is the total number of sentences in the 
text. DDi is the dependency distance of the i-th syntactic link of the text.  

This paper will investigate the probability distribution of dependency distances of six 
texts, taken from a Chinese treebank. To better position the distribution found, we also 
compare the results with two samples of dependency treebanks with randomly generated 
governors.  

In the next section, the frequency distribution of dependency distances based on the 
treebank and their fitting, using the software package Altmann-Fitter (1994/2005), are 
presented. Section 3 lists several results of dependency distance analyses of the six texts in 
question, but with randomly generated governors. Section 4 shows the result of a sequential 
plot and mean dependency distances of the texts. Section 5 presents concluding remarks and 
directions for further work.  
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2 Distributions of Dependency distances 

The Chinese dependency treebank used here is based on the news (xinwen lianbo) of China 
Central Television, a genre which is intended to be spoken but whose style is similar to 
written language. The treebank includes 711 sentences and 17,809 word tokens; the mean 
sentence length is 25 words. To maintain text homogeneity, we have randomly extracted six 
texts from the treebank. Each reports on a relatively independent event. 

Since distance can be measured in different ways, and we wish to keep the result more 
general, we derive the model of distance distribution in a continuous way. We start from the 
simple assumption that the relative rate of change of frequency (f(x)) is negatively 
proportional to the relative rate of change of distance (x), i.e. 

(1) 
( )
( )

df x a dx
f x x

= − . 

Solving this simple differential equation, used very frequently in linguistics, we obtain 

(2) ( ) a

Kf x
x

= .   

Since we measured the distance discretely and texts are finite, we transform (2) into a discrete 
distribution and compute the normalizing constant K, i.e. we set 
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KP x R
x

= =  

where R is the point of right truncation. We define the function 
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and since in (3) we have b = 1, c = 0, and the greatest distance is R, we obtain by simple 
subtraction the result K = [Φ(1,0,a)-Φ(1,R,a)]-1. Hence, finally we obtain 

(4) 
1 , 1,2,...,
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= =
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representing the right truncated Zeta distribution (or Zipf distribution). The normalizing 

constant can be simply written as the sum 1

1

R
a

j
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=
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We extract from the treebank six texts and calculate the frequency of dependency 
distance of all dependences in texts. Then we use the software Altmann-Fitter to fit the right 
truncated Zeta distribution to the observed data. The results for the six texts are shown in 
Table 2. Hence, the hypothesis is considered as compatible with the data. 
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Table 2 
Fitting the right truncated Zeta distribution to  the dependency distances in six texts 

 
No. X² DF P a R N 
001 22.72 18 0.202 1.625 21 389 
002 32.50 24 0.115 1.561 28 385 
003 22.26 23 0.505 1.602 37 233 
004 22.69 17 0.160 1.631 20 346 
005 24.57 21 0.266 1.650 27 361 
006 15.30 18 0.641 1.634 23 295 

No – ordinal number of the texts; X2 –  Chi-square; DF – degrees of freedom; P – probability of Chi-square; 
a, R – parameters of the right truncated Zeta distribution; N – number of the word tokens in the text. 

 
 
It would be preferable to list complete results for all six texts, but to save space, we only give 
an example from the six texts as an illustration of the program’s output.  
 

Table 3 
Fitting the right truncated Zeta distribution to  

the dependency distances in text 006 

Distance x Frequency NPx 
1 143 144.50 
2 43 46.57 
3 29 24.01 
4 6 15.01 
5 17 10.43 
6 7 7.74 
7 7 6.02 
8 4 4.84 
9 5 3.99 
10 5 3.36 
11 4 2.88 
12 3 2.50 
13 1 2.19 
14 1 1.94 
15 1 1.73 
16 2 1.56 
17 2 1.41 
18 1 1.29 
19 2 1.18 
20 2 1.08 
21 0 1.00 
22 1 0.97 
23 1 0.86 

a = 1.6335,  R = 23,  X2 = 15.30, DF = 18, P = 0.64 
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Figure 2. Fitting the right truncated Zeta distribution to the dependency distances in text 006.  

3 Distribution of dependency distances in two random treebanks 
 
Section 2 corroborates the adequateness of the right truncated Zeta distribution for the 
distribution of dependency distances. The following questions arise: What role does syntax 
play in such a distribution? If we form dependencies by randomly linking words in the same 
texts, would the distribution still follow the right truncated Zeta distribution? In other words, 
are our hypotheses in section 2 characteristic of syntactic dependency structures or is the Zeta 
distribution a general property of a word net? 

To answer these questions we construct two randomly generated versions of a segment 
of the treebank for the same six texts. Ideally, we could produce a language with a randomly 
generated lexicon and sentences, but it is difficult or impossible to syntactically analyze such 
a language. Therefore, by randomly assigning the governor for all words in a dependency 
analysis of a text, we can build a random dependency version as a sample of a random 
language with dependency analysis. We use two methods to generate two random dependency 
samples. 

 

.  

Figure 3. A possible random analysis of The student has a book with crossing arcs  

In the first random analysis (RL1), disregarding syntax and meaning, within each sen-
tence we select one word as root, and then, for each other word, randomly select another word 
in the same sentence as its governor. In this way, we can generate a possible random analysis 
of the sentence in Figure 3. 
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In the second random analysis (RL2), while the governor is assigned to a word, only 
dependency trees are generated which are projective and connected graphs, i.e. without 
crossing edges. Nivre (2006: 53) gives a formal definition of projectivity, which was first 
discussed by Lecerf (1964) and Hays (1964). Figure 4 is such a possible random analysis of 
the sentence in Figure 1. 

 

Figure 4. A possible random analysis of The student has a book without crossing edges  
 

3.1 Distribution of dependency distances in random analysis RL1 
 
After randomly assigning the governors for all words in six texts, we calculate the 
dependency distances of the six texts and use the Altmann-Fitter to find a possible empirical 
model, because there is as yet no theoretical assumption from which we could start. It is 
noteworthy that the distributions do not agree any more with the right truncated Zeta 
distribution, as could be expected. Instead, we found that randomly generated structures are 
best characterized by a different distribution: The Altmann-Fitter shows that the 
Hyperpoisson distribution, for instance, is a good model for all six texts with randomly 
generated governors. The Hyperpoisson distribution is defined as 

(5)    ( )
1 1

, 0,1,2...
(1; ; )

x

x x

aP x
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where b(x) = b(b+1)…(b+x-1) and 1F1(.) is the confluent hypergeometric function. We used 
here the 1-displaced version without truncation at the right hand side. In Table 4, the results 
of fitting are presented. However, in Table 5 and Figure 5, one can see the massive 
irregularity of the observed data. The distribution is not even monotonously decreasing; hence 
another model – even displaying a greater chi-square – would be more adequate, e.g. the 
negative binomial capturing the bell shape at the beginning of the data. But since the negative 
binomial has the geometric as its special case and the Hyperpoisson converges to the 
geometric when a → ∞, b → ∞ and a/b → q, we can save one parameter if we choose the 
geometric distribution. Even in that case, we still obtain a chi-square with P = 0.30 

Table 4 
Fitting the Hyperpoisson distribution to the dependency distances in six texts (RL1) 

 
No. X² DF P N a b 
001 39.99 41 0.515 52 1121.21 1204.19 
002 44.31 58 0.907 75 787.60 802.59 
003 38.69 39 0.484 49 705.72 741.09 
004 32.48 36 0.637 44 881.37 956.53 
005 26.32 37 0.904 48 367.02 368.77 
006 39.28 56 0.956 56 7193.47 7612.17 
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Table 5 

Fitting the Hyperpoisson distribution  
to the dependency distances in text 002 (RL1) 

 
X[i] F[i] NP[i] X[i] F[i] NP[i] 

1 13 15.32 39 4 3.16 
2 17 15.03 40 2 2.96 
3 17 14.73 41 3 2.77 
4 16 14.42 42 2 2.59 
5 16 14.10 43 2 2.42 
6 17 13.77 44 1 2.25 
7 12 13.43 45 1 2.10 
8 14 13.08 46 1 1.95 
9 10 12.72 47 0 1.81 
10 15 12.36 48 2 1.68 
11 10 12.00 49 3 1.56 
12 9 11.63 50 1 1.45 
13 10 11.26 51 2 1.34 
14 13 10.88 52 0 1.24 
15 9 10.51 53 1 1.14 
16 8 10.14 54 0 1.05 
17 8 9.77 55 0 0.97 
18 3 9.40 56 0 0.89 
19 10 9.03 57 0 0.82 
20 5 8.67 58 2 0.75 
21 11 8.31 59 0 0.69 
22 15 7.95 60 0 0.63 
23 6 7.61 61 0 0.57 
24 8 7.27 62 0 0.52 
25 4 6.93 63 0 0.48 
26 6 6.60 64 2 0.44 
27 8 6.29 65 0 0.40 
28 6 5.97 66 3 0.36 
29 9 5.67 67 0 0.33 
30 6 5.38 68 0 0.30 
31 5 5.09 69 0 0.27 
32 6 4.82 70 0 0.24 
33 6 4.55 71 0 0.22 
34 8 4.30 72 0 0.20 
35 2 4.05 73 1 0.18 
36 4 3.81 74 1 0.16 
37 4 3.58 75 1 1.32 
38 5 3.37    
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Figure 5. Fitting the Hyperpoisson distribution to the dependency distances in text 002 (RL1).  
 
Table 4 shows that the distribution of the dependency distances of six texts with randomly 
generated governors abide by the Hyperpoisson distribution, but a number of other 
distributions would be adequate, too. However, the observed data displayed in Figure 5 do not 
comply with the linguistic expectation of an “honest” distribution. 
 

3.2 Distribution of the dependency distances in random analysis RL2 

Obviously, the dependency graph generated by the above-mentioned method is not syntactic. 
Projectivity is a feature of most dependency graphs (trees) of natural language, although there 
are non-projective structures in some languages. Therefore, to find the influence of 
projectivity on the distribution of dependency distances, we add the constraint of projectivity 
(no crossing edges) when generating randomly the governor of a dependency graph.  

In this subsection, we present the result of fitting the right truncated Zeta to dependency 
distance in RL2. 

 
 Table 6 

Fitting the right truncated Zeta distribution to 
 the dependency distances in six texts (RL2) 

 
No. X² DF P a R 
001 21.92 38 0.983 1.389 48 
002 38.06 45 0.759 1.394 65 
003 31.29 30 0.401 1.408 46 
004 29.83 34 0.672 1.388 43 
005 25.44 33 0.824 1.334 36 
006 29.70 36 0.761 1.388 52 
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Table 7 
Fitting the right truncated Zeta distribution  
to dependency distance in text 003 (RL2) 

 
X[i] F[i] NP[i] X[i] F[i] NP[i] 

1 84 88.36 24 0 1.01 
2 36 33.31 25 2 0.95 
3 32 18.82 26 1 0.90 
4 17 12.55 27 1 0.85 
5 7 9.17 28 1 0.81 
6 6 7.09 29 0 0.77 
7 1 5.71 30 1 0.74 
8 3 4.73 31 1 0.70 
9 3 4.01 32 0 0.67 
10 3 3.46 33 0 0.64 
11 4 3.02 34 0 0.62 
12 2 2.67 35 0 0.59 
13 3 2.39 36 0 0.57 
14 2 2.15 37 0 0.55 
15 2 1.95 38 0 0.58 
16 3 1.78 39 0 0.51 
17 0 1.68 40 0 0.49 
18 2 1.51 41 0 0.47 
19 0 1.40 42 0 0.46 
20 1 1.30 43 1 0.44 
21 2 1.22 44 1 0.43 
22 1 1.14 45 1 0.42 
23 0 1.07 46 1 0.40 

 

Figure 6. Fitting the right truncated Zeta distribution to dependency distance in text 003 (RL2) 
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It is interesting to note that the results have the same good agreement with the right truncated 
Zeta distribution as natural language. Evidently, projectivity is the background mechanism of 
this phenomenon. 
 

4 Sequential plot and mean dependency distance 

The results in section 3 show that the distribution of dependency distances may not be a 
sufficient or unique criterion to distinguish syntactic and non-syntactic data. Ferrer i Cancho 
(2006) suggests that the uncommonness of crossings in the dependency graph could be a side-
effect of minimizing the Euclidean distance between syntactically related words. In other 
words, perhaps we have to investigate the mean dependency distance of a text in three 
manners (syntactic, RL1 and RL2). 

To compare the distribution of dependency distances in three samples, we use sequential 
plots of dependency distances for text 1 in three analyses (syntactic, RL1 and RL2) as shown 
in Figure 7. 

Figure 7 shows that dependency distance in RL1 has the greatest fluctuant range, the 
constraint “no-crossing edges” decreases the range in RL2, and the role of syntax is also 
obvious in minimizing dependency distances of a sentence or text. The comparison of 
pictures in Figure 7 shows that in NL (syntactic) texts there is still another mechanism 
(besides projectivity) rendering the sequence of distances almost homogeneous; while RL2 
arising randomly has a much greater fractal dimension and the oscillation could, perhaps be 
captured by a very complex Fourier analysis. But no generalization is possible before other 
languages have been analyzed.  

Using formula (1), we can obtain the mean dependency distance of six texts in three 
manners. The results are shown in Table 9. 

 
 

 

Figure 7. Sequential plots of text 001. Above: syntactic (NL); Middle: RL1; Below: RL2. 
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Table 9 
 Mean dependency distances of six texts 

Text NL RL1 RL2 
1 2.971 12.040 5.421 
2 3.427 18.575 5.925 
3 3.636 12.693 5.253 
4 3.027 10.015 4.834 
5 3.360 11.209 4.969 
6 3.387 17.080 5.770 

MDD 3.3 13.6 5.4 
 
Figure 8 shows diagrammatically the change of the range and the distribution of mean 
dependency distances in 6 texts.  

 

Figure 8: Distribution of mean dependency distance in NL, RL1 and RL2 
 

Our experiments show that projectivity can restrict the dependency distances (Ferrer i Cancho 
2006), because RL2 has a lower  mean DD than RL1. However, it is also noteworthy that we 
cannot explain why natural language has a minimized mean DD from this point of view only. 
Figure 8 demonstrates that natural language has a smaller mean DD than RL2. That suggests 
that syntax also plays a certain role in minimizing the mean DD of a language. Figure 8 
provides a functional view of syntactic word-order restrictions: one of their (many) benefits is 
the reduction of the mean DD of a sentence or text. It seems that projectivity and syntax co-
operate to allow us to use long sentences, but keep the mean DD within an acceptable range. 

5 Conclusions 

We have investigated the probability distributions of dependency distances in six texts 
extracted from a Chinese dependency treebank. The results reveal that the data can be well 
captured by the right truncated Zeta distribution. To see whether the conclusion holds only for 
a natural language, we constructed two samples with randomly generated governors, but with 
the same texts. The most random one needs the addition of a further parameter, the other one 
abides by the right truncated Zeta distribution. The paper also presents a study on sequential 
plots and mean dependency distances of six texts with three analyses (a syntactic and two 
random ones). The results show that syntax plays an important role in minimizing the (mean) 
dependency distance and in turn for the minimization of decoding effort. The shorter the 
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dependency distances, the smaller is the decoding effort of the sentence (Gibson 2000). Thus, 
the problem has its psycholinguistic and synergetic counterparts. 

Considering the importance of dependency distance for any linguistic applications based 
on the dependency principle, the study contributes to a quantitative understanding of 
dependency syntax. Further research in projectivity is needed to investigate why RL2 abides 
by the same regularity as a natural text, while it has a greater mean DD than a natural 
(syntactic) text.  
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